Blow-up and local weak solution for a modified two-component Camassa-Holm equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Well-posedness and Blow-up Phenomenon for a Modified Two-component Camassa-Holm System in Besov Spaces

ρt + (uρ)x = 0, t > 0, x ∈ R, (1.1b) m(0, x) = m0(x), x ∈ R, (1.1c) ρ(0, x) = ρ0(x), x ∈ R, (1.1d) where (u0, ρ0) is given modified profile,m = u−uxx and ρ = (1−∂ x)(ρ−ρ0) ,g is a positive constant. For convenience, we let g = 1 in this paper. The modified two-component Camassa-Holm equation is written in terms of velocityu and locally averaged density ρ . With m = u− uxx ,ρ = γ − γxx and γ = ρ...

متن کامل

Singular solutions of a modified two-component Camassa-Holm equation.

The Camassa-Holm (CH) equation is a well-known integrable equation describing the velocity dynamics of shallow water waves. This equation exhibits spontaneous emergence of singular solutions (peakons) from smooth initial conditions. The CH equation has been recently extended to a two-component integrable system (CH2), which includes both velocity and density variables in the dynamics. Although ...

متن کامل

Blow-up of solution of an initial boundary value problem for a generalized Camassa-Holm equation

In this paper, we study the following initial boundary value problem for a generalized Camassa-Holm equation

متن کامل

Well-posedness of modified Camassa–Holm equations

Article history: Received 4 April 2008 Revised 11 January 2009 Available online 28 February 2009

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boundary Value Problems

سال: 2012

ISSN: 1687-2770

DOI: 10.1186/1687-2770-2012-52